Using logarithmic properties, what is the solution to \log _(3)(y 5) \log_(3)6=\log_(3)66

( log3(y + 5) + log36 = log366)
all 3's go below the logg)

Orginial question
Using logarithmic properties, what is the solution to log3(y + 5) + log36 = log366? Show all necessary steps.

Respuesta :

Answer:

y = 6

Step-by-step explanation:

Given logarithmic equation:

[tex]\log_{3}(y+5)+\log_{3}(6)=\log_{3}(66)[/tex]

To find the solution to the given logarithmic equation, we can use logarithmic properties.

[tex]\boxed{\begin{array}{c}\underline{\textsf{Logarithmic Properties}}\\\\\textsf{Product law:}\;\;\log_axy=\log_ax + \log_ay\\\\\textsf{Equality law:} \quad \textsf{If $\log_ax=\log_ay$ then $x=y$}\end{array}}[/tex]

Begin by applying the product rule to the left side of the equation:

[tex]\log_{3}((y+5)\cdot 6)=\log_{3}(66)\\\\\\\log_{3}(6y+30)=\log_{3}(66)[/tex]

Next, apply the equality law by equating the arguments:

[tex]6y+30=66[/tex]

Now, we can solve for y:

[tex]6y+30-30=66-30\\\\\\6y=36\\\\\\\dfrac{6y}{6}=\dfrac{36}{6}\\\\\\y=6[/tex]

Therefore, the solution to the given logarithmic equation is:

[tex]\Large\boxed{\boxed{y=9}}[/tex]