Answer:
The remaining drugs will be [tex]\frac{1}{8} \sqrt[4]{\frac{1}{8} }[/tex] of the initial amount, or about 3.72 mg.
Step-by-step explanation:
To find the fraction of the drug remains in the patient after 24 hours, we can use the half life formula:
[tex]\boxed{N=\left(\frac{1}{2} \right)^{\frac{t}{T} }\cdot N_o}[/tex]
where:
Given:
[tex]\displaystyle N=\left(\frac{1}{2} \right)^{\frac{t}{T} }\cdot N_o[/tex]
[tex]=\left(\frac{1}{2} \right)^{\frac{24}{6.4} }\cdot N_o[/tex]
[tex]=\frac{1}{8} \sqrt[4]{\frac{1}{8} } \cdot N_o[/tex]
[tex]=\frac{1}{8} \sqrt[4]{\frac{1}{8} } \cdot(50)[/tex]
[tex]=6\frac{1}{4} \sqrt[4]{\frac{1}{8} } \ mg[/tex]
[tex]\approx 3.72\ mg[/tex]