find inverse function of

Answer:
[tex]g^{-1}(x)=(x+2)^3+2[/tex]
Step-by-step explanation:
[tex]\text{Solution: }\\\\g(x)=\sqrt[3]{x-2}-2\\\\\text{or, }y=\sqrt[3]{x-2}-2\\\\\text{or, }y+2=\sqrt[3]{x-2}\\\\\text{Cubing both sides,}\\\\\text{}\hspace{0.5cm}(y+2)^3=x-2\\\\\text{Interchanging }x\text { and }y,\\\\(x+2)^3=y-2\\\\\text{or, }y=(x+2)^3+2\\\\\therefore\ g^{-1}(x)=(x+2)^3+2[/tex]
Answer: g'(x) = (x + 2)³ + 2
Step-by-step explanation:
To find the inverse of the given function, we will set the function equal to y, flip the x and y variables (x, y to y, x), and solve for y again.
Given:
[tex]\displaystyle g(x)= \sqrt[3]{x-2} -2[/tex]
Set equal to y:
[tex]\displaystyle y= \sqrt[3]{x-2} -2[/tex]
Swap x and y variables:
[tex]\displaystyle x= \sqrt[3]{y-2} -2[/tex]
Add 2 to both sides of the equation:
[tex]\displaystyle x+2= \sqrt[3]{y-2}[/tex]
Cube both sides of the equation:
[tex]\displaystyle (x+2)^3=y-2[/tex]
Add 2 to both sides of the equation:
[tex]\displaystyle (x+2)^3+2=y[/tex]
Inverse notation:
[tex]\displaystyle g'(x)=(x+2)^3+2[/tex]