Respuesta :

Original equation:
[tex]\(-9d^{3}\left(8d^{5}-6d-8\right)\)[/tex]

In order to solve this you need to distribute

[tex]\(-9d^{3}(8d^{5})+ -9d^{3}(-6d) + -9d^{3}(-8)[/tex]

Then, just multiply ~ Remember, when multiply exponents, you add them

[tex]-72d^{8}+54d^{4}+72d^{3}[/tex]

Answer:

see explanation

Step-by-step explanation:

using the property of exponents

• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]

given

-9d³ (8[tex]d^{5}[/tex] - 6d - 8 ) ← distribute parenthesis by - 9d³

= - 9(8)[tex]d^{(3+5)}[/tex] - 9(- 6)[tex]d^{(3+1)}[/tex] - 9(- 8)d³

= - 72[tex]d^{8}[/tex] + 54[tex]d^{4}[/tex] + 72d³