Answer:
$30
Step-by-step explanation:
To calculate the interest earned on a savings account with an annual interest rate of 1% compounded yearly, we can use the compound interest formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Compound Interest Formula}}\\\\I=P\left(1+\dfrac{r}{n}\right)^{nt}-P\\\\\textsf{where:}\\\phantom{ww}\bullet\;\;\textsf{$I$ is the total interest earned.}\\\phantom{ww}\bullet\;\;\textsf{$P$ is the principal amount.}\\\phantom{ww}\bullet\;\;\textsf{$r$ is the interest rate (in decimal form).}\\\phantom{ww}\bullet\;\;\textsf{$n$ is the number of times interest is applied per year.}\\\phantom{ww}\bullet\;\;\textsf{$t$ is the time (in years).}\end{array}}[/tex]
In this case:
Substitute the values into the formula and solve for I:
[tex]I=3000\left(1+\dfrac{0.01}{1}\right)^{1 \times1}-3000\\\\\\I=3000\left(1.01\right)^{1}-3000\\\\\\I=3000(1.01)-3000\\\\\\I=3030-3000\\\\\\I=30[/tex]
Therefore, the interest earned is:
[tex]\LARGE\boxed{\boxed{\$30}}[/tex]