Respuesta :

Answer: [tex]f(x)=-x^2[/tex]


Step-by-step explanation:

In mathematics,the starting point on a grid is called an origin. It is the point (0,0), where the x-axis and y-axis intercept.

Thus to check which function passing through the origin, we need to check for x=0, y=f(x) must equals to 0.

1. [tex]f(x)=(x+4)^2[/tex]

At x=0,[tex]f(0)=(0+4)^2=4^2=16[/tex]

⇒f(x) is not passing through origin.

2. [tex]f(x)=x(x-4)[/tex]

At x=0,[tex]f(0)=0(0-4)=0[/tex]

⇒f(x) passing through origin.

But the vertex form of equation is [tex]f(x)=x^2-4x-4+4=(x-2)^2-4[/tex]

⇒ vertex of f(x)=(2,4)

3. [tex]f(x)=(x-4)(x+4)[/tex]

At x=0,[tex]f(0)=(0-4)(0+4)=-4\times4=-16[/tex]

⇒f(x) is not passing through origin.

4. [tex]f(x)=-x^2[/tex]

At x=0,[tex]f(0)=0^2=0[/tex]

⇒f(x) passing through origin.

Vertex form of equation=[tex]f(x)=-1(x-0)+0[/tex]

⇒ vertex=(0,0)

Answer:

f(x) = –x2

Step-by-step explanation:

i just did the test and got it right