The initial volume of a gas cylinder is 750.0 ml. if the pressure of a gas inside the cylinder changes from 840.0 mm hg to 360.0 mm hg, what is the final volume the gas occupies?

Respuesta :

It should be 1.750 L
 Hope this helps.

Answer:

[tex]V_2=1.75L[/tex]

Step-by-step explanation:

Use the Boyle's law which states that the pressure of a gas in a closed container is inversely proportional to the volume of the container, when the temperature is constant. Mathematically this is:

[tex]P_1*V_1=P_2*V_2[/tex]  (1)

Where:

[tex]P_1=Initial\hspace{3}pressure\\P_2=Final\hspace{3}pressure\\V_1=Initial\hspace{3}volume\\V_2=Final\hspace{3}volume[/tex]

Before attempting to solve the problem, let's do the pertinent conversions:

[tex]840mmHg*\frac{1torr}{1mmHg} *\frac{1Pa}{133.32torr} =6.3Pa[/tex]

[tex]360mmHg*\frac{1torr}{1mmHg} *\frac{1Pa}{133.32torr} =2.7Pa[/tex]

[tex]750ml*\frac{1L}{1000ml}=0.75L[/tex]

So, we got:

[tex]P_1=6.3Pa\\P_2=2.7Pa\\V_1=0.75L[/tex]

Now, let's isolate [tex]V_2[/tex] from (1) in order to find the final volume:

[tex]V_2=\frac{P_1*V_1}{P_2} \\\\V_2=\frac{6.3*0.75}{2.7} = 1.75L[/tex]