By graphing the system of constraints find the values of x and y that maximize the objective function, find the maximum value.

3x+y<=7
x+2y<=9
x>=0
y>=0

Maximum for P=2x+y

A. P=3
B. P=4
C. P=6
D. P=10

Respuesta :

Answer:

x=1, y=4

P=6

Step-by-step explanation:

We are given that

[tex]3x+y\leq 7[/tex]

[tex]x+2y\leq 9[/tex]

[tex]x\geq 0[/tex]

[tex]y\geq 0[/tex]

Objective function

[tex]P=2x+y[/tex]

We have to values of x and y that maximize the P and maximum value of P .

First we change inequality equation into equality equation

[tex]3x+y=7[/tex]  (I equation )

[tex]x+2y=9[/tex]  (II equation)

Equation I multiply by 2 and then subtract from II equation

[tex]-5x=-5[/tex]

[tex]x=1[/tex]

Substitute x=1 in equation I

Then, we get

[tex]3(1)+y=7[/tex]

[tex]3+y=7[/tex]

[tex]y=7-3=4[/tex]

The two equation intersect at point (1,4).

Substitute x=0 in equation I

Then , we get y=7

Substitute y=0 then

[tex]3x=7[/tex]

[tex]x=\frac{7}{3}=2.3[/tex]

The equation I cut the x- axis at point (2.3,0)and y-axis at (0,7).

Substitute x=0 in equtaion II

[tex]2y=9[/tex]

[tex]y=\frac{9}{2}=4.5[/tex]

Substitute y=0

Then, we get

[tex]x=9[/tex]

Therefore, the equation II cut the x- axis at point (9,0) and y axis at point (0,4.5).

Substitute x=0 and y=0 in inequality Equation I

[tex]3(0)+0=0< 7[/tex]

It is true . Therefore, shaded region below the line.

Substitute x=0 and y=0 in inequality equation II

Then, [tex]0+2(0)=0 < 9[/tex]

It is true. Therefore, the shaded region below the line.

The feasible region is bounded.The feasible region bounded by (0,0),(0,4.5),(2.3,0) and (1,4).

At (0,4.5)

[tex]P=2(0)+4.5=4.5[/tex]

At (2.3,0)

[tex]P=2(2.3)+0=4.6[/tex]

At (1,4)

[tex]P=2(1)+4=6[/tex]

At (0,0)

[tex]P=2(0)+0=0[/tex]

Hence, maximum value of P is 6 at (1,4).

x=1 and y=4

Ver imagen lublana