Respuesta :
Answer : The correct option is, [tex]1.63\times 10^{-3}g[/tex]
Explanation : Given,
Mass of oxygen gas = [tex]1.45\times 10^{-3}g[/tex]
Molar mass of oxygen gas = 32 g/mole
Molar mass of water = 18.02 g/mole
First we have to calculate the moles of [tex]O_2[/tex].
[tex]\text{Moles of }O_2=\frac{\text{Mass of }O_2}{\text{Molar mass of }O_2}=\frac{1.45\times 10^{-3}g}{32g/mole}=4.53\times 10^{-5}moles[/tex]
Now we have to calculate the moles of [tex]H_2O[/tex].
The balanced chemical reaction is,
[tex]2H_2+O_2\rightarrow 2H_2O[/tex]
From the balanced reaction we conclude that
As, 1 mole of [tex]O_2[/tex] react to give 2 mole of [tex]H_2O[/tex]
So, [tex]4.53\times 10^{-5}[/tex]moles of [tex]O_2[/tex] react to give [tex]4.53\times 10^{-5}\times 2=9.06\times 10^{-5}[/tex] moles of [tex]H_2O[/tex]
Now we have to calculate the mass of [tex]H_2O[/tex]
[tex]\text{Mass of }H_2O=\text{Moles of }H_2O\times \text{Molar mass of }H_2O[/tex]
[tex]\text{Mass of }H_2O=(9.06\times 10^{-5}mole)\times (18.02g/mole)=1.63\times 10^{-3}g[/tex]
Therefore, the mass water produced is, [tex]1.63\times 10^{-3}g[/tex]