2x + 3y = 1,470 Change the equation to slope-intercept form. Identify the slope and y-intercept of the equation. Be sure to show all your work.

Respuesta :

2x + 3y = 1470 ...subtract 2x from both sides
3y = -2x + 1470 ...divide both sides by 3
y = -2/3x + 490

In y = mx + b form (slope intercept form), the slope will be in the m position and the y int will be in the b position

y = -2/3x + 490
y = mx + b

as u can see, the number in the m position (the slope) = -2/3
and the number in the b position (the y int) = 490 or (0,490)

Answer:

Slope is -2/3.

y-intercept is 490.

Step-by-step explanation:

Slope intercept form of a line is y = mx + c

Where, m is the slope of the line,

Here, the given equation is,

2x + 3y = 1,470,

By subtraction property of equality,

3y = -2x + 1470

By the division property of equality,

[tex]\implies y = -\frac{2}{3}x + 490[/tex]

By comparing,

[tex]m = -\frac{2}{3}[/tex]

Thus, the slope of the given line is [tex]-\frac{2}{3}[/tex],

For y-intercept, x = 0,

[tex]y=-\frac{2}{3}(0) + 490[/tex]

[tex]\implies y = 490[/tex]

y-intercept of the line is 490.