Respuesta :

Answer:

[tex]f^{-1}(x)=(\frac{x}{6})^{\frac{1}{4}}[/tex]

This is a function for [0,∞).

Step-by-step explanation:

The given function is

[tex]f(x)=6x^4[/tex]

We need to find the [tex]f^{-1}(x)[/tex].

Step 1: Replace f(x) be y.

[tex]y=6x^4[/tex]

Step 2: Interchange x and y.

[tex]x=6y^4[/tex]

Step 3: Isolate variable y.

[tex]\frac{x}{6}=y^4[/tex]

[tex](\frac{x}{6})^{\frac{1}{4}}=y[/tex]

Step 4: Interchange the sides.

[tex]y=(\frac{x}{6})^{\frac{1}{4}}[/tex]

Step 5: Replace y by [tex]f^{-1}(x)[/tex].

[tex]f^{-1}(x)=(\frac{x}{6})^{\frac{1}{4}}[/tex]

Therefore, [tex]f^{-1}(x)=(\frac{x}{6})^{\frac{1}{4}}[/tex].

This function is is defined for all positive values of x.

The inverse of function [tex]f(x)=6x^4[/tex] is a function for [0,∞).

Answer:

The answer is C: y= +or-(x/6)^1/4 is a function

Step-by-step explanation:

on edge :)