Respuesta :

From the figure (shown below), the coordinates of P and Q are
P (-2, -2)
Q (4, 8)

Let the point R (x, y) divide the line segment PQ in a 2:5 ratio.
ΔPAR ≈ ΔPBQ because of AAA.
Therefore
[tex] \frac{PA}{PB} = \frac{2a}{2a+5a} \\\\ \frac{x+2}{6}= \frac{2}{7} \\\\7x+14=12 \\\\ 7x=-2 \\\\ x=- \frac{2}{7} [/tex]

Also,
[tex] \frac{AR}{BQ}= \frac{2}{7} \\\\ \frac{y+2}{10} = \frac{2}{7} \\\\ 7y+14=20 \\\\ 7y = 6 \\\\ y = \frac{6}{7} [/tex]

Answer: 
R has the coordinates (-2/7, 6/7) or (-0.2857, 0.8571)
Ver imagen Аноним