Find the difference of functions s and r shown below. r(x) = –x² + 3x
s(x) = 2x + 1 (s – r)(x) =

-x^2+3x-2x+1
(-x^2+3x)-2x+1
(2x+1)-(x^2 + 3x)
2x+1-x^2+3x

Respuesta :

Answer:

(2x + 1) - (–x² + 3x) is difference .

Step-by-step explanation:

Given : r(x) = –x² + 3x  and  s(x) = 2x + 1

To find : Find the difference of functions s and r .

Solution :  We have given that  r(x) = –x² + 3x and s(x) = 2x + 1.

Difference :

(s – r)(x) = s(x) - r(x)

              =(2x + 1) - (–x² + 3x)

              = 2x +1 + x²-3x

             = x²-x +1.

Therefore, (2x + 1) - (–x² + 3x) is difference .

The difference of the function is (2x+1)-(x^2 + 3x)

Difference of functions

Given the following functions

r(x) = –x² + 3x

s(x) = 2x + 1

Taking the difference of the function will give:

(s – r)(x) = 2x - 1 - (-x^2 + 3x)

Expand

(s – r)(x) = 2x - 1  + x^2 - 3x

(s – r)(x) = x^2 - x - 1

Hence the difference of the function is (2x+1)-(x^2 + 3x)

Learn more on difference of functions: https://brainly.com/question/17431959