Respuesta :

2x + 100 = 5x + 55
3x = 45
x = 15

2(15) + 100 = 130

180-130 = 50

so angle 2 is 50 degrees

The angles in transverse parallel lines are related through some theorems such as vertical angles, corresponding angles, etc. the measure of [tex]\angle 2[/tex] is [tex]50^o[/tex]

Given the attached diagram

First, we solve for x using the corresponding angle theorem

[tex]5x + 55 = 2x + 100[/tex] ---- corresponding angles are equal

Collect like terms

[tex]5x - 2x = 100 - 55[/tex]

[tex]3x = 45[/tex]

Divide both sides by 3

[tex]x = 15[/tex]

We then  solve for [tex]\angle 2[/tex] using the straight line theorem

[tex]\angle 2 + 5x + 55 = 180[/tex] ---- sum of angles on a straight line

Substitute 15 for x

[tex]\angle 2 + 5 \times 15 + 55 = 180[/tex]

[tex]\angle 2 + 75 + 55 = 180[/tex]

Collect like terms

[tex]\angle 2 =- 75 - 55 + 180[/tex]

[tex]\angle 2 =50[/tex]

Hence, the measure of [tex]\angle 2[/tex] is [tex]50^o[/tex]

Read more about parallel lines and corresponding angles at:

https://brainly.com/question/16701300