Which ordered pairs are solutions to the inequality 4x+y>−6?

Select each correct answer.



(2, 0)

(−3, 6)

(4, −20)

(0, −9)

(−1, −1)

Respuesta :

Answer:

(2,0) , (4,-20) and (-1,-1)

Step-by-step explanation:

[tex]4x+y>-6[/tex]

WE need to select an ordered pair that is solution to our inequality

Lets check with each option

(2,0) , plug in 2 for x  and 0 for y

[tex]4x+y>-6[/tex]

[tex]4(2)+0>-6[/tex]

[tex]8>-6[/tex] True

(−3, 6), plug in -3 for x  and 6 for y

[tex]4x+y>-6[/tex]

[tex]4(-3)+6>-6[/tex]

[tex]-6>-6[/tex] False

(4, −20) , plug in 4 for x  and -20 for y

[tex]4x+y>-6[/tex]

[tex]4(4)-20>-6[/tex]

[tex]-4>-6[/tex] True

(0, −9) , plug in 0 for x  and -9 for y

[tex]4x+y>-6[/tex]

[tex]4(0)-9>-6[/tex]

[tex]-9>-6[/tex] False

(-1, −1) , plug in -1 for x  and -1 for y

[tex]4x+y>-6[/tex]

[tex]4(-1)-1>-6[/tex]

[tex]-5>-6[/tex] True

Replacing each ordered pair into the inequality and verifying if it forms an identity, we have that those which is a solution is:

(2,0)

The inequality is:

[tex]4x + y \geq 6[/tex]

Ordered pair (2,0)

[tex]4(2) + 0 \geq 6 \rightarrow 8 \geq 6[/tex]

It is a solution.

Ordered pair (-3,6)

[tex]4(-3) + 6 \geq 6 \rightarrow -6 \geq 6[/tex]

It is not a solution.

Ordered pair (4,-20)

[tex]4(4) - 20 \geq 6 \rightarrow -4 \geq 6[/tex]

It is not a solution.

Ordered pair (0,-9)

[tex]4(0) - 9 \geq 6 \rightarrow -9 \geq 6[/tex]

It is not a solution.

Ordered pair (-1,-1)

[tex]4(-1) - 1 \geq 6 \rightarrow -5 \geq 6[/tex]

It is not a solution.

A similar problem is given at https://brainly.com/question/23636210