Respuesta :

ARea of base  = TA - LA = 4pi

pi r^2 = 4 pi  where r is radius of base.

r^2  = 4

so r = 2  Answer

Answer:

r = 2 units

Step-by-step explanation:

Total area(T.A) of the circular cone is given by:

[tex]\text{T.A} =\pi r^2+ \pi r\sqrt{r^2+h^2}[/tex]

Lateral surface area(L.A) of the circular cone:

[tex]\text{L.A} = \pi r\sqrt{r^2+h^2}[/tex]

where

r is the radius and h is the height of the circular cone.

As per the statement:

[tex]T.A = 12 \pi[/tex] and [tex]L.A = 8 \pi[/tex]

then;

[tex]T.A -L.A = \pi r^2+ \pi r\sqrt{r^2+h^2}-\pi r\sqrt{r^2+h^2}[/tex]

⇒[tex]12 \pi -8 \pi = \pi r^2[/tex]

⇒[tex]4 \pi =\pi r^2[/tex]

Divide both sides by [tex]\pi[/tex] we have;

[tex]4 =r^2[/tex]

or

[tex]r^2 = 4[/tex]

⇒[tex]r= \pm\sqrt{4} =\pm 2[/tex]

r cannot be in negative

⇒[tex]r = 2[/tex] units

Therefore, radius of the circular cone is, r = 2 units