Which expressions are equivalent to the one below? Check all that apply. 9^x
a. 9 * 9^(x 1)
b. (36/4)^x
c. 36^x/4
d. 9 * 9 ^(x-1)
e. 36^x/4^x
f. x^5

Respuesta :

[tex]a.\ 9\cdot9^{x+1}=9^{1+x+1}=9^{x+2}\neq9^x\\\\b.\ \left(\frac{36}{4}\right)^x=9^x\ OK\ :)\\\\c.\ \frac{36^x}{4}\neq9^x\\\\d.\ 9\cdot9^{x-1}=9^{1+x-1}=9^x\ \ OK\ :)\\\\e.\ \frac{36^x}{4^x}=\left(\frac{36}{4}\right)^x=9^x\ \ \ OK\ :)\\\\f.\ x^5\neq9^x\\\\Answer:\huge\boxed{b;\ d;\ e}[/tex]

[tex]Used:\\\\a^n\cdot a^m=a^{n+m}\\\\\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n[/tex]

In between given 6 exponential expressions, [tex](\frac{36}{4} )^{x}[/tex], 9 × [tex]9^{x - 1}[/tex], and  [tex]\frac{36^{x}}{4^{x}}[/tex] are equivalent to [tex]9^{x}[/tex]

What is an exponential expression?

"An exponential equation is an equation with exponents where the exponent (or) a part of the exponent is a variable."

Given expression is [tex]9^{x}[/tex].

a. 9 × [tex]9^{x + 1}[/tex] is equal to  [tex]9^{x + 2}[/tex].

b. [tex](\frac{36}{4} )^{x}[/tex] is equal to [tex]9^{x}[/tex].

c. [tex]\frac{36^{x}}{4}[/tex] is equal to [tex]9^{x}[/tex] × [tex]4^{x - 1}[/tex].

d. 9 × [tex]9^{x - 1}[/tex] is equal to  [tex]9^{x}[/tex].

e. [tex]\frac{36^{x}}{4^{x}}[/tex] is equal to  [tex]9^{x}[/tex].

f. [tex]x^{5}[/tex] is equal to [tex]x^{5}[/tex] .

Therefore, from the given expressions,  [tex](\frac{36}{4} )^{x}[/tex], 9 × [tex]9^{x - 1}[/tex], and  [tex]\frac{36^{x}}{4^{x}}[/tex] are equivalent to [tex]9^{x}[/tex].

Learn more about an exponential expression here: https://brainly.com/question/11471525

#SPJ2