Respuesta :

we know that

A method for calculating the area of a triangle when you know the lengths of all three sides is the Heron's Formula.

The Heron's Formula states that

[tex]A=\sqrt{p(p-a)(p-b)(p-c)}[/tex]  

where

a,b.c are the length sides of the triangle

p is half the perimeter of the triangle

Let

[tex]A(-4,1)\\B(-7,5)\\C(0,1)[/tex]

Step 1

Find the distance AB

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]A(-4,1)\\B(-7,5)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(5-1)^{2}+(-7+4)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(-3)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]dAB=5\ units[/tex]

Step 2

Find the distance BC

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]B(-7,5)\\C(0,1)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(1-5)^{2}+(0+7)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(7)^{2}}[/tex]

[tex]d=\sqrt{65}[/tex]

[tex]dBC=8.06\ units[/tex]

Step 3

Find the distance AC

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]A(-4,1)\\C(0,1)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(1-1)^{2}+(0+4)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]d=\sqrt{16}[/tex]

[tex]dAC=4\ units[/tex]

Step 4

Find half the perimeter

[tex]p=\frac{1}{2}(AB+BC+AC)[/tex]

substitute the values

[tex]p=\frac{1}{2}(5+8.06+4)[/tex]

[tex]p=8.53\ units[/tex]

Step 5

Find the area

Applying the Heron's Formula

[tex]A=\sqrt{8.53(8.53-5)(8.53-8.06)(8.53-4)}[/tex]  

[tex]A=\sqrt{8.53(3.53)(0.47)(4.53)}[/tex]    

[tex]A=\sqrt{64.11}[/tex]  

[tex]A=8\ units^{2}[/tex]  

therefore

the answer is

the area of the triangle is [tex]8\ units^{2}[/tex]  

The area of a shape is the amount of space it occupies.

The area of the triangle is 8 unit square.

The vertices are given as:

[tex]\mathbf{A = (-4,1)}[/tex]

[tex]\mathbf{B = (-7,5)}[/tex]

[tex]\mathbf{C = (0,1)}[/tex]

The area of the triangle is:

[tex]\mathbf{A= \frac{1}{2} \times |A_x(B_y - C_y) + B_x(C_y - A_y) + C_x(A_y - B_y)|}[/tex]

So, we have:

[tex]\mathbf{A= \frac{1}{2} \times |-4(5 - 1) -7(1 - 1) + 0(1 - 5)|}[/tex]

[tex]\mathbf{A= \frac{1}{2} \times |-4(4) -7(0) + 0|}[/tex]

[tex]\mathbf{A= \frac{1}{2} \times |-4(4) -0 + 0|}[/tex]

[tex]\mathbf{A= \frac{1}{2} \times |-16|}[/tex]

Remove absolute brackets

[tex]\mathbf{A= \frac{1}{2} \times 16}[/tex]

[tex]\mathbf{A= 8}[/tex]

Hence, the area of the triangle is 8 unit square.

Read more about areas at:

https://brainly.com/question/12074976