Respuesta :

[tex]\bf \textit{logarithm of factors}\\\\ log_{{ a}}(xy)\implies log_{{ a}}(x)+log_{{ a}}(y) \\\\\\ \textit{Logarithm of exponentials}\\\\ log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\\\\ -------------------------------\\\\ 4500\implies 6\cdot 6\cdot 5\cdot 5\cdot 5\implies 6^2\cdot 5^3 \\\\\\ ln(4500)\implies ln(6^2\cdot 5^3)\implies ln(6^2)+ln(5^3)\implies 2ln(6)+3ln(5)[/tex]

      Simplified form of the given logarithmic expression ln(4500) will be         ln(4500) = 3ln(5) + 2ln(6)

Given logarithmic expression in the question is,

  • ln(4500)

We have to convert this expression in terms of ln(5) and ln(6).

Since, Factored form of 4500 = 5×5×5×6×6

                                                  = 5³×6²

Therefore, ln(4500) = ln(5³×6²)

                                 = ln(5³) + ln(6²) [Since, ln(a × b) = ln(a) + ln(b)]

                                 = 3ln(5) + 2ln(6) [Since, ln(a³) = 3ln(a)]

   Hence, ln(4500) = 3ln(5) + 2ln(6) will be the answer.

Learn more,

https://brainly.com/question/282940