Respuesta :

Let

[tex]A(-4,9)\\B(11,9)\\C(5,-1) \\D(-10,-1)\\E(-4.-1)[/tex]  

using a graphing tool  

see the attached figure to better understand the problem

we know that

Parallelogram is a quadrilateral with opposite sides parallel and equal in length

so

[tex]AB=CD \\AD=BC[/tex]

The area of a parallelogram is equal to

[tex]A=B*h[/tex]  

where  

B is the base

h is the height  

the base B is equal to the distance AB

the height h is equal to the distance AE  

Step 1

Find the distance AB

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-4,9)\\B(11,9)[/tex]  

substitute the values

[tex]d=\sqrt{(9-9)^{2}+(11+4)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(15)^{2}}[/tex]

[tex]dAB=15\ units[/tex]

Step 2

Find the distance AE

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

[tex]A(-4,9)\\E(-4.-1)[/tex]  

substitute the values

[tex]d=\sqrt{(-1-9)^{2}+(-4+4)^{2}}[/tex]

[tex]d=\sqrt{(-10)^{2}+(0)^{2}}[/tex]

[tex]dAE=10\ units[/tex]

Step 3

Find the area of the parallelogram

The area of a parallelogram is equal to

[tex]A=B*h[/tex]

[tex]A=AB*AE[/tex]

substitute the values

[tex]A=15*10=150\ units^{2}[/tex]

therefore

the answer is

the area of the parallelogram is [tex]150\ units^{2}[/tex]


Ver imagen calculista