Respuesta :

The ideal gas law may be written as
[tex]p= \frac{\rho R T}{M} [/tex]
where
p = pressure
ρ =density
T = temperature
M = molar mass
R = 8.314 J/(mol-K)

For the given problem,
ρ = 0.09 g/L = 0.09 kg/m³
T = 26°C = 26+273 K = 299 K
M = 1.008 g/mol = 1.008 x 10⁻³ kg/mol

Therefore
[tex]p= \frac{(0.09 \, kg/m^{3})*(8.314 \, J/(mol-K))*(299 \, K)}{1.008 \times 10^{-3} \, kg/mol} =2.2195 \times 10^{5} \, Pa[/tex]

Note that 1 atm = 101325 Pa
Therefore
p = 2.2195 x 10⁵ Pa
   = 221.95 kPa 
   = (2.295 x 10⁵)/101325 atm
   = 2.19 atm

Answer:
2.2195 x 10⁵ Pa (or 221.95 kPa or 2.19 atm)