Triangle PQR has sides measuring 9 feet and 10 feet and a perimeter of 24 feet. What is the area of triangle PQR? Round to the nearest square foot.


square feet

Respuesta :

the answer is 22 square feet :) hope this helps

Answer:

22 square foot

Step-by-step explanation:

Consider PQR be a triangle, such that PQ=9 feet, PR=10 feet.

Now, Perimeter of triangle=24

⇒Sum of all the sides=24

⇒PQ+PR+QR=24

⇒9+10+QR=24

⇒QR=5 feet

Also, s=[tex]\frac{a+b+c}{2}=\frac{9+10+5}{2}=12[/tex]

Area of triangle A=[tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]

=[tex]\sqrt{12(12-9)(12-10)(12-5)}[/tex]

=[tex]\sqrt{12(3)(2)(7)}[/tex]

=[tex]\sqrt{504}[/tex]

=[tex]22.44[/tex]

≈[tex]22sq foot[/tex]

thus, area of triangle=22 square foot.

Ver imagen boffeemadrid