contestada

Write a function based on the given parent function and the transformations in the given order.
Parent function y=∛x
Shift 9 units to the left.
Shift horizontally by a factor of 5.
Reflect across the x-axis.

Respuesta :

Given the function

[tex]y= \sqrt[3]{x} [/tex]

A shift 9 units to the left will result in the function:

[tex]y'= \sqrt[3]{x+9} [/tex]

A Shrink horizontally by a factor of 5 will result in the function:

[tex]y''=\sqrt[3]{5(x+9)}[/tex]

A
reflection across the x-axis will result in the function

[tex]y'''=-\sqrt[3]{5(x+9)}[/tex]

Therefore, the final function after the series of transformation is

[tex]y'''=-\sqrt[3]{5(x+9)}[/tex]