Respuesta :

Answer: x = ± i , x = ±√2i are solution .

Step-by-step explanation:

Given : [tex]x^{4} +3x^{2} +2=0[/tex], use u substitution to solve.

To find : what are the solutions of the equation .

Solution : We have given that [tex]x^{4} +3x^{2} +2=0[/tex].

Let consider [tex]x^{2}[/tex] = u .

Substitute u =  [tex]x^{2}[/tex] in given equation .

[tex]u^{2} + 3u +2=0[/tex].

On factoring

[tex]u^{2} + 2u+1u +2=0[/tex].

Taking common

u( u+2) +1 (u+2) = 0.

On grouping

(u+1) (u+2) =0

Now, u+1 = 0 ⇒ u = -1.

         u+2 = 0 ⇒ u = -2.

In term of x, plugging [tex]x^{2}[/tex] = u.

[tex]x^{2}[/tex] = -1   ;  [tex]x^{2}[/tex] = -2.

taking square root both side

x = ± i

x = ±√2i.

Therefore, x = ± i , x = ±√2i are solution .

Answer:

u=x^2 and the solutions are x= + or - the squareroot of 2 and x= + or - 1