Respuesta :
Answer:
y = f(x) = ln(x)
sketch diagram , with 2 rectangles from the left side
Sum = area of rectangle 1 + area of rectangle 2 = (1/2)(f(3)+f(3.5)) = ...plug values and calculator
2/
with 2 rectangles from the right side
Sum = area of rectangle 1 + area of rectangle 2 = ...
Answer:
[tex]\text{Left Riemann sum }= \frac{1}{2}(\ln 5+\ln 5.5)[/tex]
Step-by-step explanation:
We are given y=ln(x)
We need to represent the left riemann sum with n=2
Please see the attachment for sketch and two left rectangle.
[tex]I=\int_5^6 \ln xdx[/tex]
Left Riemann sum of integral
[tex]\int_a^bf(x)dx=\frac{b-a}{n}(f(x_0)+f(x_1))[/tex]
where, f(x)=ln(x), a=5 , b=6, n=2 , [tex]x_0=5[/tex] and [tex]x_1=5.5[/tex]
Now we write given integral into riemann sum
[tex]L_2=\frac{6-5}{2}(f(5)+f(5.5))[/tex]
[tex]L_2=\frac{1}{2}(\ln 5+\ln 5.5)\approx 1.6571[/tex]
