Respuesta :
Answer:
The absolute value of the product of the zeros of A(t) is 108
Step-by-step explanation:
We are given
[tex]A(t)=(t-k)(t-3)(t-6)(t+3)[/tex]
we have
A(2)=0
we can use it and find k
we can plug t=2 , A(t)=0
[tex]0=(2-k)(2-3)(2-6)(2+3)[/tex]
so, we get
[tex]0=(2-k)[/tex]
[tex]k=2[/tex]
now, we can plug it back
[tex]A(t)=(t-2)(t-3)(t-6)(t+3)[/tex]
now, we can find zeros
[tex]A(t)=(t-2)(t-3)(t-6)(t+3)=0[/tex]
[tex](t-2)=0[/tex]
[tex]t=2[/tex]
[tex](t-3)=0[/tex]
[tex]t=3[/tex]
[tex](t-6)=0[/tex]
[tex]t=6[/tex]
[tex](t+3)=0[/tex]
[tex]t=-3[/tex]
so, zeros are
[tex]t=-3,t=2,t=3,t=6[/tex]
now, we can find it's product
[tex]=-3\times 2\times 3\times 6[/tex]
[tex]=-108[/tex]
now, we can find it's absolute value
[tex]=|-108|[/tex]
[tex]=108[/tex]
Answer:
The answer is x= 5
Step-by-step explanation:
I got it right on khan academy.