Plz Help! :)
Which ordered pairs lie on the graph of the exponential function
f(x) = 3(1/4)^x

Select each correct answer.
A.​ (−2,48) ​

B. (0,3) ​

C. (2,3/16) ​

D.​ (12,0) ​

Respuesta :

B
when x=0, f(3)=3(1/4)^0
any number to the 0th power is 1, so f(3)=3*1=3
A, C are also correct.  (1/4)^-2=16, (1/4)^2=1/16

Answer:

A.​ (−2,48) ​

B. (0,3) ​

C. (2,3/16) ​

Step-by-step explanation:

The given function is

[tex]f(x)=3(\frac{1}{4} )^{x}[/tex]

To find those ordered pairs that lie on the graph, we need to evaluate each of them

A.  (−2,48) ​

[tex]f(-2)=3(\frac{1}{4} )^{-2}=3(4)^{2}=3(16)=48[/tex]

This pair lies on the graph.

B. (0,3)

[tex]f(0)=3(\frac{1}{4} )^{0}=3(1)=3[/tex]

This pair lies on the graph.

C. (2,3/16) ​

[tex]f(2)=3(\frac{1}{4} )^{2}=3(\frac{1}{16} )=\frac{3}{16}[/tex]

This pair also lies on the graph.

D.​ (12,0) ​

[tex]f(12)=3(\frac{1}{4} )^{12}=\frac{3}{16,777,216}[/tex]

This pair doesn't lie on the graph, because it doesn't satisfy the exponential function.

Therefore, the right asnwer are A, B and C.