Respuesta :

Finding the upper and lower bounds for a definite integral without an equation is pretty hard because how can we find the upper and lower bounds of  definite integral if there is no equation given. But I will teach you how to find the lower and upper bounds of a definite integral, when the equation is like this 

[tex] \int\limits^6_1 t^{2} - 6t + 11dt[/tex] 

So, i integrate this, 
[tex]( \frac{t^{3} }{3} - 3t^{2} + 11t) \int\limits^6_1 [/tex]

I know I have a minimum at x=3 because;
f(t )= t^2 − 6t + 11
f′(t) = 2
t−6 = 0
2(t−3) = 0
t = 3
f(5) = 4
f(1) = −4