Respuesta :
The number of 3 simple random samples that can be selected from a population of size 6 is 20
The combination of an object is the method used in choosing the possible number of arrangements in an array of datasets.
It is can be expressed by using the formula:
[tex]\mathbf{^nC_r= \dfrac{n!}{r!(n-r)!}}[/tex]
where;
- [tex]\mathbf{^nC_r}[/tex] = number of combinations
- n = total no. of objects in the data set
- r = no of objects to be chosen in the data set.
From the given information:
- total no of data n = 6, and;
- the no of objects to be chosen r = 3
∴
[tex]\mathbf{^nC_r= \dfrac{6!}{3!(6-3)!}}[/tex]
[tex]\mathbf{^nC_r= \dfrac{6!}{3!(3)!}}[/tex]
[tex]\mathbf{^nC_r= \dfrac{6 \times 5 \times 4 \times 3!}{3!(3)!}}[/tex]
[tex]\mathbf{^nC_r= \dfrac{6 \times 5 \times 4}{3\times 2 \times 1}}[/tex]
[tex]\mathbf{^nC_r= 2 \times 5 \times 2}}[/tex]
[tex]\mathbf{^nC_r=20}}[/tex]
Therefore, there are 20 ways to select 3 size random samples from a population of size 6.
Learn more about combination here:
https://brainly.com/question/8018593?referrer=searchResults