Respuesta :

Greetings!

Let x represent the first number
Let y represent the second number

[tex] \left \{ {{x+y=50} \atop {x-y=28}} \right. [/tex]

Eliminate a variable:
[tex] \frac{\left \{ {{x+y=50} \atop {x-y=28}} \right. }{2x=78}[/tex]

Solve for x:
[tex]2x=78[/tex]

Divide both sides by 2.
[tex]2x=78[/tex]

[tex] \frac{2x}{2}=\frac{78}{2} [/tex]

[tex]x=39[/tex]

Solve for the other variable:
[tex]x+y=50[/tex]

[tex]39+y=50[/tex]

Add -39 to both sides.
[tex]39+y=50[/tex]

[tex](39+y)+(-39)=(50)+(-39)[/tex]

[tex]y=11[/tex]

The Answer is:
[tex] \left[\begin{array}{ccc}x=39, y=11\end{array}\right] [/tex]

One number is 39 and the other is 11.

Hope this helped!
-Benjamin
let the two numbers be x and y 
x+y=50----eqn1
x-y=28----eqn2
subtract eqn2 frm eqn1, you'll have:
2y=22
y=11
 Then substitute y=1 in eqn1. you'll have:

x+11=50
x=50-11
x=39

∴x=39(the first number) and y=11(the second number)