Respuesta :

a)

[tex](2,2)\quad\implies\quad x=2\qquad y=2\\\\2x+y=2\cdot2+2=4+2=\boxed{6}\quad\checkmark[/tex]

b)

[tex](-2,-2)\quad\implies\quad x=-2\qquad y=-2\\\\2x+y=2\cdot(-2)+(-2)=-4-2=\boxed{-6}[/tex]

c)

[tex](3,6)\quad\implies\quad x=3\qquad y=6\\\\2x+y=2\cdot3+6=6+6=\boxed{12}[/tex]

d)

[tex](0,2)\quad\implies\quad x=0\qquad y=2\\\\2x+y=2\cdot0+2=0+2=\boxed{2}[/tex]

e)

[tex](-1,1)\quad\implies\quad x=-1\qquad y=1\\\\2x+y=2\cdot(-1)+1=-2+1=\boxed{-1}[/tex]

Only point A = (2, 2) lies on the graph.