Respuesta :
First [tex]\mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}[/tex]
[tex]\left(2x+3\right)\left(2x+3\right)=\:\left(2x+3\right)^{1+1}=\:\left(2x+3\right)^2[/tex]
The rest cannot fit into the fancy looking formula piece. So I will type them out.
2(2x + 3)^2(2x + 5)(2x - 3)(2x - 5)(x - 2)(x - 3)(x - 4)(x - 6)(2x + 4x - 3)
[tex]Simplify\ \textgreater \ x\cdot \:2+4x-3 \ \textgreater \ \mathrm{Add\:similar\:elements:}\:2x+4x=6x [/tex]
[tex]6x-3[/tex]
Finally we get
2(2x + 3)^2(2x + 5)(2x - 3)(2x - 5)(x - 2)(x - 3)(x - 4)(x - 6)(6x - 3)
Hope this helps!
[tex]\left(2x+3\right)\left(2x+3\right)=\:\left(2x+3\right)^{1+1}=\:\left(2x+3\right)^2[/tex]
The rest cannot fit into the fancy looking formula piece. So I will type them out.
2(2x + 3)^2(2x + 5)(2x - 3)(2x - 5)(x - 2)(x - 3)(x - 4)(x - 6)(2x + 4x - 3)
[tex]Simplify\ \textgreater \ x\cdot \:2+4x-3 \ \textgreater \ \mathrm{Add\:similar\:elements:}\:2x+4x=6x [/tex]
[tex]6x-3[/tex]
Finally we get
2(2x + 3)^2(2x + 5)(2x - 3)(2x - 5)(x - 2)(x - 3)(x - 4)(x - 6)(6x - 3)
Hope this helps!
Answer: Fill in the missing factors.
Step-by-step explanation: 1. (x^2 +4x -3) 6. (x-6)^2
2. (x-2) 7. (x-4)
3. (2x+5) 8. (2x+3)
4. (2x-5) 9. (2x-3)
5. (x-3) 10.(2x+3)
