Respuesta :
Answer:
[tex]\displaystyle \int {(hx + q)} \, dx = \frac{hx^2}{2} + qx + C[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
*Note:
Assume h and q are arbitrary constants, where h and q ≠ 0.
Step 1: Define
Identify
[tex]\displaystyle \int {(hx + q)} \, dx[/tex]
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int {(hx + q)} \, dx = \int {hx} \, dx + \int {q} \, dx[/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {(hx + q)} \, dx = h\int {x} \, dx + q\int {} \, dx[/tex]
- [Integrals] Reverse Power Rule: [tex]\displaystyle \int {(hx + q)} \, dx = h \Big( \frac{x^2}{2} \Big) + qx + C[/tex]
- Simplify: [tex]\displaystyle \int {(hx + q)} \, dx = \frac{hx^2}{2} + qx + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration