If m ≤ f(x) ≤ m for a ≤ x ≤ b, where m is the absolute minimum and m is the absolute maximum of f on the interval [a, b], then m(b −
a.≤ b f(x) dx a ≤ m(b − a). use this property to estimate the value of the integral. 6π (2x − 4 sin(x)) dx 5π

Respuesta :

I suppose the correct editing of the question is the following:
[tex]\text{If } m\leq f(x)\leq M\text{ over the interval }[a,b] \text{ then}\\m(b-a)\leq\int_a^bf(x)dx\leq M(b-a)\\\text{The given function is the following:}\\f(x)=2x-4sin(x)\text{over the interval }[5\pi,6\pi ]\\\text{Minimum of the function over the above interval: } m=2(5\pi+\frac{\pi}{2})-4\\\text{Maximum: }M=10\pi\\\text{The integral I we are looking for is in the interval:}\\\pi m\leq I\leq \pi M[/tex]