Respuesta :

[tex]e ^{2x} -e ^x=6 [/tex] ----(i)

Let, [tex]e ^x =t[/tex]
Therefore, [tex]e^{2x} = t^{2} [/tex]

Therefore, from (i),

t²-t=6 
t²-3t+2t-6=0
t(t-3)+2(t-3)=0

Therefore, (t-3)(t+2)=0
Therefore, t=3 or t = -2

But, 
[tex]e^x =t [/tex]

Therefore, 

[tex]e^x = 3 [/tex] or [tex]e^x = -2[/tex]

Taking ln on both sides,
Therefore, 
[tex]ln(e^x)=ln(3)[/tex] or [tex]ln(e^x) = ln(-2)[/tex]

But natural log of negative numbers does not exist since negative numbers are not in the domain of ln(x)
Therefore, 
[tex]ln(e^x) = ln(-2)[/tex] is discarded 
Therefore, x = ln(3) is the only solution.