Respuesta :
Step 1: Replace f(x) with y: y=-8-5x
Step 2: Switch X and Y: X=-8-5y
Step 3:Solve for y: x+8=-5y ≈ y=(x+8)/-5
Step 4: Replace y with F^-1(x): f^-1(x)=(x+8)/-5 :)
Step 2: Switch X and Y: X=-8-5y
Step 3:Solve for y: x+8=-5y ≈ y=(x+8)/-5
Step 4: Replace y with F^-1(x): f^-1(x)=(x+8)/-5 :)
The inverse of the function is given by:
[tex]f^{-1}(x) = -\frac{8 + x}{5}[/tex]
Suppose we have a function y = f(x). To find the inverse, we exchange y and x, and then isolate y.
In this problem, we have that:
[tex]y = -8 - 5x[/tex]
Exchanging y and x:
[tex]x = -8 - 5y[/tex]
Isolating y:
[tex]5y = -8 - x[/tex]
[tex]5y = -(8 + x)[/tex]
[tex]y = -\frac{8 + x}{5}[/tex]
Thus, the inverse function is:
[tex]f^{-1}(x) = -\frac{8 + x}{5}[/tex]
A similar problem is given at https://brainly.com/question/23950969