Write an equation of the line, in point-slope form, that passes through the two given points.

Points: (-15, 7), (5, -3)

A. y - 7 = 1/2 (x+15)
B. y + 7 = -2 (x-15)
C. y - 7 = -1/2 (x+15)
D. y + 7 = 2(x-15)

Respuesta :

slope is -10/20=-1/2

y-7=(-1/2)(x+15). answer C
[tex]\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~{{ -15}} &,&{{ 7}}~) % (c,d) &&(~{{ 5}} &,&{{ -3}}~) \end{array} \\\\\\ % slope = m slope = {{ m}}\implies \cfrac{\stackrel{rise}{{{ y_2}}-{{ y_1}}}}{\stackrel{run}{{{ x_2}}-{{ x_1}}}}\implies \cfrac{-3-7}{5-(-15)}\implies \cfrac{-3-7}{5+15}[/tex]

[tex]\bf \cfrac{-10}{20}\implies -\cfrac{1}{2} \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-7=-\cfrac{1}{2}[x-(-15)] \\\\\\ y-7=-\cfrac{1}{2}(x+15)[/tex]