Respuesta :
Answer:
[tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = -\frac{sech^8(x)}{8} + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = sech^8(x)[/tex]
- [u] Differentiate [Hyperbolic Differentiation, Chain Rule]: [tex]\displaystyle du = -8sech^8(x)tanh(x) \ dx[/tex]
Step 3: integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-1}{8}\int {-8sech^8(x)tanh(x)} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-1}{8}\int {} \, du[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = \frac{-u}{8} + C[/tex]
- Back-Substitute: [tex]\displaystyle \int {sech^8(x)tanh(x)} \, dx = -\frac{sech^8(x)}{8} + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration