Respuesta :

Answer:

Option C, D, E are the correct options.

Step-by-step explanation:

The given expression is [tex]x^{\frac{8}{5}}[/tex]

Now we will check for each option given

A. [tex](x^{5})^{\frac{1}{8}}=x^{\frac{5}{8}}[/tex]

Wrong option.

B.[tex]\sqrt[8]{x^{5}}=x^{\frac{5}{8}}[/tex]

Wrong option

C.[tex](\sqrt[5]{x})^{8}=x^{\frac{8}{5}}[/tex]

Correct option

D.[tex]\sqrt[5]{x^{8}}=x^{\frac{8}{5}}[/tex]

Correct option

E.[tex](x^{8})^{\frac{1}{5}}=x^{\frac{8}{5}}[/tex]

Correct option

F.[tex](\sqrt[8]{x})^{5}=x^{\frac{5}{8}}[/tex]

Wrong option

Answer :

C , D, E are equivalent to  [tex]x^{\frac{8}{5} }[/tex].

Step by step explanation :

Given: [tex]x^{\frac{8}{5} }[/tex].

To find :  Which of the following choices are equivalent to the expression below .

Solution : We have given that  [tex]x^{\frac{5}{8} }[/tex].

Now , we will check all option .

By exponent rule : [tex](a^{b} )^c= a^{bc}[/tex]

A . [tex](x^{5} )^\frac{1}{8}[/tex] =  [tex]x^{\frac{5}{8} }[/tex].

Wrong

B .[tex]\sqrt[8]{x^{5} }[/tex] =  [tex]x^{\frac{5}{8} }[/tex].

Wrong

C. [tex](\sqrt[5]{x} )^8[/tex] =  [tex]x^{\frac{8}{5} }[/tex].

Correct

D. [tex]\sqrt[5]{x^{8} }[/tex] =[tex]x^{\frac{8}{5} }[/tex].

Correct

E.  [tex](x^{8} )^\frac{1}{5}[/tex] = [tex]x^{\frac{8}{5} }[/tex].

Correct

F. [tex](\sqrt[8]{x} )^5[/tex] = [tex]x^{\frac{5}{8} }[/tex].

Wrong .

Therefore, C , D, E are equivalent to  [tex]x^{\frac{8}{5} }[/tex].