Respuesta :

Answer:

[tex]x=\frac{-7-\sqrt{5}}{2}[/tex] or [tex]x=\frac{-7+ \sqrt{5}}{2}[/tex]

Step-by-step explanation:

The given equation is

[tex](2x+3)^2+8(2x+3)+11=0[/tex]

Let us treat this as a quadratic equation in [tex](2x+3)[/tex].

where [tex]a=1,b=8,c=11[/tex]

The solution is given by the quadratic formula;

[tex](2x+3)=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

We substitute these values into the formula to obtain;

[tex](2x+3)=\frac{-8\pm \sqrt{8^2-4(1)(11)} }{2(1)}[/tex]

[tex](2x+3)=\frac{-8\pm \sqrt{64-44} }{2}[/tex]

[tex](2x+3)=\frac{-8\pm \sqrt{20} }{2}[/tex]

[tex](2x+3)=\frac{-8\pm2\sqrt{5} }{2}[/tex]

[tex](2x+3)=-4\pm \sqrt{5}[/tex]

[tex](2x+3)=-4-\sqrt{5}[/tex] or [tex](2x+3)=-4+ \sqrt{5}[/tex]

[tex]2x=-3-4-\sqrt{5}[/tex] or [tex]2x=-3-4+ \sqrt{5}[/tex]

[tex]2x=-7-\sqrt{5}[/tex] or [tex]2x=-7+ \sqrt{5}[/tex]

[tex]x=\frac{-7-\sqrt{5}}{2}[/tex] or [tex]x=\frac{-7+ \sqrt{5}}{2}[/tex]

The solutions of the equation (2x + 3)^2 + 8(2x + 3) + 11 = 0 are -4.6 and -2.4

The equation is given as:

(2x + 3)^2 + 8(2x + 3) + 11 = 0

Next, we plot the graph of the equation (see attachment)

From the graph, the curve of the graph crosses the x-axis at points

x = -4.6 and x = -2.4

Hence, the solutions of the equation (2x + 3)^2 + 8(2x + 3) + 11 = 0 are -4.6 and -2.4

Read more about quadratic equations at:

https://brainly.com/question/1214333

Ver imagen MrRoyal