Respuesta :

Answers:
_________________________________________________________
Question 1)   The correct answer is:   [C]:  " 5 " .
_________________________________________________________
Question  2)   The correct answer is:   [C]:  "-24 " . 

_________________________________________________________
Explanation:
_____________________________________________
Question  #1)
_____________________________________________
The "denominator" must not equal "zero" ;
                                            since one cannot "divide by zero" ;

As such, the value of the "denominator"; which is:  "(9x − 45)" ; 
         cannot equal "zero".

So, what is the value of "x" when:  "9x − 45 = 0" ? ; 
__________________________________________________
Method 1)
__________________________________________________

  " 9x − 45 = 0 " ;  Solve for "x" ; 

Add "45" to each side of the equation;
 
  9x − 45 + 45 = 0 + 45 ; 

to get:

  9x = 45 ; 

Divide each side of the equation by "9" ; 
to isolate "x" on one side of the equation; & to solve for "x" ;

  9x / 9 = 45 / 9 ;

    x = 5 ; which is:  Answer choice:  [C]:  "5" .
________________________________________________
Method 2)

  " 9x − 45 = 0 " ;  Solve for "x" ; 

→   Factor out a "9" in:  " 9x − 45" ; and rewrite:

→    " 9(x − 5) = 0 "  ; 

Divide EACH SIDE of the equation by "9" ; 

→ " { [9(x − 5)]  / 9 }  = { 0 / 9 } ;

→   x − 5 = 0 ; 

Add "5" to EACH SIDE of the equation;
to isolate "x" on one side of the equation; & to solve for "x" ;

→   x − 5 + 5 = 0 + 5 ;

→   x = 5 ;  which is:  Answer choice:  [C]:  " " .
_________________________________________________________

Question  #2)
_________________________________________________________
Again, note that the "denominator" must not equal "zero" ; since one cannot "divide by zero" ;

As such, the value of the "denominator"; which is:  "2x + 48" ; cannot equal "zero".

So, what is the value of "x" when:  "2x + 48 = 0" ? ; 
_______________________________________________________
Method 1) 
_______________________________________________________
  " 2x + 48 = 0 " ;  Solve for "x" ; 

Subtract "48" from each side of the equation; 
 
  2x + 48 − 48 = 0 − 48 ; 

to get:

  2x = -48 ; 

Divide each side of the equation by "2" ; 
                  to isolate "x" on one side of the equation; & to solve for "x" ;

  2x / 2 = -48 / 2 ;

    x = -24 ; which is:  Answer choice:  [C]:  "-24" .
_________________________________________________________
Method 2)
_________________________________________________________

  " 2x + 48 = 0 " ;  Solve for "x" ; 

→   Factor out a "2" in:  " 2x + 48" ; and rewrite:

→    " 2(x + 24) = 0 "  ; 

Divide EACH SIDE of the equation by "2" ; 

→ " { [2(x + 24)]  / 2 }  = { 0 / 2 } ;

→   x + 24 = 0 ; 

 Subtract "24" from EACH SIDE of the equation;
             to isolate "x" on one side of the equation; & to solve for "x" ;

→   x + 24 − 24 = 0 − 24 ; 

→   x = -24 ;  which is:  Answer choice:  [C]:  " -24 " .
__________________________________________________________
Method 3) 
__________________________________________________________

  " 2x + 48 = 0 " ;  Solve for "x" ; 

→   Divide the entire equation (both sides) by "2" ; to simplify :

  {2x + 48} / 2 = 0/ 2 ; 

to get:

       x + 24 = 0  ;

 Subtract "24" from EACH SIDE of the equation;
             to isolate "x" on one side of the equation; & to solve for "x" ;

→   x + 24 − 24 = 0 − 24 ; 

→   x = -24 ;  which is:  Answer choice:  [C]:  " -24 " .
________________________________________________________