Respuesta :

[tex]D: -3x - 1 \ \textgreater \ 0 \\ \\ -3x \ \textgreater \ 1 \\ \\ x \ \textless \ - \frac{1}{3} [/tex]


[tex]\ln (-3x-1) - \ln 7 = 2 \\ \\ \ln ( \frac{-3x-1}{7}) = 2 \\ \\ \ln ( \frac{-3x-1}{7}) = \ln e^{2} \\ \\ \frac{-3x-1}{7} = e^{2} \\ \\ -3x - 1 = 7e^{2} \\ \\ 7e^{2} +1 = -3x \\ \\ \boxed{x = \frac{-7e^{2}-1}{3} } [/tex]



[tex]D: \\ \\ 4x+1 \ \textgreater \ 0 \\ \\ 4x \ \textgreater \ - 1 \\ \\ x \ \textgreater \ - \frac{1}{4} [/tex]


[tex]\ln(4x+1) - \ln 3 = 5 \\ \\ \ln ( \frac{4x+1}{3}) = 5 \\ \\ \ln ( \frac{4x+1}{3}) = \ln e^{5} \\ \\ \frac{4x+1}{3} = e^{5} \\ \\ 4x+1 = 3e^{5} \\ \\ 4x = 3e^{5} - 1 \\ \\ \boxed{x = \frac{3e^{5}-1}{4} }[/tex]