Respuesta :
Answer:
g = 3
Explanation:
To solve for g, we will need to isolate the g on one side of the equation.
This can be done as follows:
[tex] \frac{4g}{14} - \frac{3}{7} - \frac{g}{14} = \frac{3}{14} [/tex]
1- multiply all terms by 14 to get rid of the fraction:
4g - 6 - g = 3
2- Combine like terms:
4g - g = 3 + 6
3g = 9
3- Isolate the g:
[tex] \frac{3g}{3} = \frac{9}{3} [/tex]
g = 3
Hope this helps :)
g = 3
Explanation:
To solve for g, we will need to isolate the g on one side of the equation.
This can be done as follows:
[tex] \frac{4g}{14} - \frac{3}{7} - \frac{g}{14} = \frac{3}{14} [/tex]
1- multiply all terms by 14 to get rid of the fraction:
4g - 6 - g = 3
2- Combine like terms:
4g - g = 3 + 6
3g = 9
3- Isolate the g:
[tex] \frac{3g}{3} = \frac{9}{3} [/tex]
g = 3
Hope this helps :)
Answer:
g = 3
Step-by-step explanation:
Given: Expression [tex]\frac{4g}{14}-\frac{3}{7}- \frac{g}{14}=\frac{3}{14}[/tex]
We have to solve for g .
Consider the given expression [tex]\frac{4g}{14}-\frac{3}{7}- \frac{g}{14}=\frac{3}{14}[/tex]
Cancel common factor 2,
[tex]\frac{4g}{14}=\frac{2g}{7}[/tex]
Expression becomes,
[tex]\frac{2g}{7}-\frac{3}{7}-\frac{g}{14}=\frac{3}{14}[/tex]
Multiply both side by LCM = 14
[tex]\frac{2g}{7}\cdot \:14-\frac{3}{7}\cdot \:14-\frac{g}{14}\cdot \:14=\frac{3}{14}\cdot \:14[/tex]
Simplify, we have,
[tex]4g-6-g=3[/tex]
Adding g both side , we have,
[tex]3g-6=3[/tex]
Adding 6 both side, we have,
[tex]3g=9[/tex]
Divide both sde by 3, we have,
g = 3
Thus, g = 3