Respuesta :

The exercise is solved by applying the Pythagorean Theorem:

 h^2= a^2 + b^2 

 h= √(a^2 + b^2)

 h: hypotenuse (the opposite side of the right angle and the longest side of the triangle).

 a and b: legs (the sides that form the right angle).

 The first objective will be to find the value of AD:

 AD= AB - DB

 We don't know the DB leg, so we proceed to find it clearing it from the Pythagorean equation:

 h^2= a^2 + b^2

 a= √ (h^2 - b^2)

 a= √ (17^2 - 8^2)

 a= DB= 15

 Then, AD is:

 AD= 21-15= 6

 Once we find the value of the AD leg, we can find the hypotenuse AC:

 h= √ (a^2 + b^2)

 h= √ (6^2 + 8^2)

 h= AC= 10

 The answer is: C. 10

The answer is: C. 10