Respuesta :
[tex]\bf \textit{area of a sector of a circle}\\\\
A=\cfrac{\theta r^2}{2}\quad
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
r=1.4\\
\theta = \frac{2\pi }{3}
\end{cases}\implies A=\cfrac{\frac{2\pi }{3}\cdot 1.4^2}{2}
\\\\\\
A=\cfrac{\frac{2\cdot 1.4^2\cdot \pi }{3}}{\frac{2}{1}}\implies A=\cfrac{2\cdot 1.4^2\cdot \pi }{3}\cdot \cfrac{1}{2}\implies A=\cfrac{1.96\pi }{3}[/tex]
The area of the sector is 2.05 units
How to determine the sector area?
The radius is given as:
r = 1.4
The central angle is:
Angle = 2π/3
The area of the sector is calculated as:
[tex]Area = (\frac{\theta}{2}) * r^2[/tex]
So, we have:
[tex]Area = (\frac{2\pi}{3 * 2}) * 1.4^2[/tex]
Evaluate
Area = 2.05
Hence, the area of the sector is 2.05
Read more about sector area at:
https://brainly.com/question/16736105
#SPJ6