Respuesta :

To find the inverse of a function, switch the x and the y (the f(x) = y), then solve for y.

x = 4y - 9

x + 9 = 4y

y = (x+9)/4

So f^-1(x) = (x+9)/4

Answer:

[tex]f(x)^{-1}[/tex] = [tex]\frac{x+9}{4}[/tex].

Step-by-step explanation:

Given : f(x)=4x-9.

To find : Which is the inverse of the function.

Solution : We have given f(x)=4x-9.

Step 1 : replace y to x

x = 4y -9.

Step 2: solve for y

On adding by 9 both side

x + 9 = 4y

On dividing by 4 both sides

y = [tex]\frac{x+9}{4}[/tex].

y = [tex]f(x)^{-1}[/tex].

Then [tex]f(x)^{-1}[/tex] = [tex]\frac{x+9}{4}[/tex].

Therefore, [tex]f(x)^{-1}[/tex] = [tex]\frac{x+9}{4}[/tex].