Respuesta :

On ed the answer is B

we will check each options

we know that

geometric sequence are sequences whose common ratios are same

graph-A:

we are given terms as

[tex]a_1=1[/tex]

[tex]a_2=3[/tex]

[tex]a_3=5[/tex]

[tex]a_4=7[/tex]

[tex]a_5=9[/tex]

now, we can find common ratios

[tex]r_1=\frac{a_2}{a_1}[/tex]

[tex]r_1=\frac{3}{1}[/tex]

[tex]r_1=3[/tex]

[tex]r_2=\frac{a_3}{a_2}[/tex]

[tex]r_2=\frac{5}{3}[/tex]

we can see that r1 is not equal to r2

so, this is not geometric sequnce

graph-B:

we are given terms as

[tex]a_1=1[/tex]

[tex]a_2=2[/tex]

[tex]a_3=4[/tex]

[tex]a_4=8[/tex]

[tex]a_5=9[/tex]

now, we can find common ratios

[tex]r_1=\frac{a_2}{a_1}[/tex]

[tex]r_1=\frac{2}{1}[/tex]

[tex]r_1=2[/tex]

[tex]r_2=\frac{a_3}{a_2}[/tex]

[tex]r_2=\frac{4}{2}[/tex]

[tex]r_2=2[/tex]

[tex]r_3=\frac{a_4}{a_3}[/tex]

[tex]r_3=\frac{8}{4}[/tex]

[tex]r_3=2[/tex]

so,

[tex]r_1=r_2=r_3=2[/tex]

so, this is geometric sequnce

graph-C:

we are given terms as

[tex]a_1=2[/tex]

[tex]a_4=4[/tex]

[tex]a_9=6[/tex]

since, they are not in proper sequence

so, this is not geometric sequence

graph-D:

we are given terms as

[tex]a_1=1[/tex]

[tex]a_2=4[/tex]

[tex]a_3=9[/tex]

now, we can find common ratios

[tex]r_1=\frac{a_2}{a_1}[/tex]

[tex]r_1=\frac{4}{1}[/tex]

[tex]r_1=4[/tex]

[tex]r_2=\frac{a_3}{a_2}[/tex]

[tex]r_2=\frac{9}{4}[/tex]

Since, r1 is not equal to r2

so, this is not geometric sequence.........Answer