Write the explicit formula for the geometric sequence represented by the recursive formula. a1 = 11 an = 3 · an-1 A) an = 11 · 3n B) an = 3 · 11n C) an = 11 · 3n-1 D) an = 3 · 11n-1

Respuesta :

c. an= 11 * 3n-1. have funnnnn

Answer:

Option C is correct.

[tex]a_n =11 \cdot 3^{n-1}[/tex]

Explanation:

Explicit formula for the geometric sequence is given by:

[tex]a_n =a_1 \cdot r^{n-1}[/tex]

where r is the common ratio term.

Given the recursive formula for geometric sequence:

[tex]a_1 = 11[/tex]

[tex]a_n =3 \cdot a_{n-1}[/tex]

For n =2

[tex]a_2 = 3 \cdot a_{2-1}[/tex]

[tex]a_2 = 3 \cdot a_1[/tex]

⇒[tex]a_2 = 3 \cdot 11 = 33[/tex]

For n =3

[tex]a_3= 3 \cdot a_{3-1}[/tex]

[tex]a_3= 3 \cdot a_{2}[/tex]

⇒[tex]a_3= 3 \cdot 33 = 99[/tex]

Common ratio(r):

[tex]\frac{a_2}{a_1} = \frac{33}{11} = 3[/tex]

[tex]\frac{a_3}{a_2} = \frac{99}{33} = 3[/tex] and so on..

⇒ r = 3

Therefore, the explicit formula for the geometric sequence represented by the recursive formula is:

[tex]a_n =11 \cdot 3^{n-1}[/tex]