Respuesta :

ANSWER

[tex]n < - 3 \: or \: n> - 2[/tex]



EXPLANATION



The given inequality is,

[tex] |2n + 5| \: > \: 1[/tex]


By the definition of absolute value,



[tex] - (2n + 5) \: > \: 1 \: or \: (2n + 5) \: > \: 1[/tex]



We divide through by negative 1, in the first part of the inequality and reverse the sign to get,

[tex] 2n + 5 \: < \: - 1 \: or \: (2n + 5) \: > \: 1[/tex]

We simplify now to get,

[tex] 2n \: < \: - 1 - 5 \: or \: 2n \: > \: 1 - 5[/tex]


[tex] 2n \: < \: - 6 \: or \: 2n \: > \: - 4[/tex]


Divide through by 2 to obtain,

[tex] n \: < \: - 3 \: or \: n \: > \: - 2[/tex]


Answer: C on edge

Step-by-step explanation: I just did it.