Respuesta :

The inverse of

f(x) = (7-8x)^2

is ............. f-1(x) = 1/8 *(7 
±sqrt(x))

If we plot this graph We can easily see it is not a function

 (Fails the vertical line test)
Ver imagen calculista

Answer: The inverse of f(x) is not a function because it does not satisfies the vertical line test.

Explanation:

The given function is,

[tex]f(x)=(7-8x)^2[/tex]

[tex]y=(7-8x)^2[/tex]

Interchange the variables and find the value of y to determine the inverse of f(x).

[tex]x=(7-8y)^2[/tex]

[tex]\pm \sqrt{x}=7-8y[/tex]

[tex]y=\frac{7\pm \sqrt{x}}{8}[/tex]

put [tex]y=f^{-1}(x)[/tex]

[tex]f^{-1}(x)=\frac{7\pm \sqrt{x}}{8}[/tex]

For each value of x there are two values, so it will not satisfy the vertical line test.

According to vertical line test the graph of a function intersect the vertical line at most once. It means for each x there exist a unique value of y.

Since the  [tex]y=f^{-1}(x)[/tex], does not satisfy the vertical lines test, therefore the inverse of given function is not a function.

Ver imagen DelcieRiveria